
Solving ARC with Deep Reinforcement Learning
A Novel Framework for Sequential Solutions

Francesco Braicovich Vittorio Garavelli Filippo Gombac Mariano Masiello
Head Member Member Member

Hephaestus Applied Artificial Intelligence Association

Abstract

We propose a reinforcement learning (RL) framework for solving tasks in the Abstraction and
Reasoning Corpus (ARC) through sequential transformation prediction. Departing from existing
domain-specific languages (DSLs) tailored for program synthesis, we design a novel DSL optimized for
sequential decision-making, structuring actions into three composable sub-actions: color selection, cell
selection, and transformations. This design enables policy learning by decomposing complex tasks
into interpretable steps. We implement a custom RL environment where agents interact with ARC
tasks by iteratively applying DSL operations. To address the challenge of large discrete action spaces,
we integrate the Wolpertinger architecture, combining Deep Deterministic Policy Gradient (DDPG)
with k-nearest neighbors (KNN) to map continuous proto-actions to discrete DSL commands. State
representations are encoded via a convolutional neural network (CNN) augmented with self-attention,
enhancing spatial reasoning. Experimental results demonstrate that our framework learns structured
transformations, evidenced by monotonically decreasing policy and value loss. However, generalization
to unseen ARC tasks remains limited under current computational constraints. We identify hierarchical
policy decomposition and learnable action embeddings as critical directions for improving adaptability
and scalability.

Keywords: Reinforcement Learning (RL), Abstraction and Reasoning Corpus (ARC), Domain-Specific
Language (DSL), Deep Deterministic Policy Gradient (DDPG), Wolpertinger Architecture

Code available at: https://github.com/francescobraicovich/ARC.git

https://github.com/francescobraicovich/ARC.git

Contents

1 Introduction 1
1.1 Abstract reasoning corpus . 1
1.2 Proposed Approach . 2

2 Domain-Specific Language (DSL) 3
2.1 Design Principles and Scope . 3
2.2 Color Selection . 3
2.3 Selection . 4
2.4 Transformation . 4
2.5 A Concrete Example . 5

3 Action Space & Environment 6
3.1 Action Space . 6
3.2 Environment . 7

4 Architecture 10
4.1 High-Level Architecture Overview . 10
4.2 Deep Deterministic Policy Gradient (DDPG) . 10
4.3 Wolpertinger for Large Discrete Actions . 12
4.4 Encoding States . 13

5 Conclusions 15
5.1 Limitations and Future Work . 16

6 References 17

A Appendix A: DSL 18
A.1 Color Selection . 18
A.2 Selection . 19
A.3 Transformation . 21

Solving ARC with
Reinforcement Learning

1 Introduction

1.1 Abstract reasoning corpus

The Abstraction and Reasoning Corpus (ARC), introduced in the seminal work On the Measure of
Intelligence [1], serves as a benchmark for artificial general intelligence (AGI) designed to evaluate an
AI system’s ability to acquire new skills and solve novel, abstract problems through few-shot learning
and broad generalization. The corpus comprises 1,000 tasks, with 800 publicly accessible (divided equally
into 400 training and 400 evaluation tasks) and 200 reserved for a hidden test set. Each task is defined
by a small set of input-output examples, where the input grid is transformed into the output grid via
a task-specific rule. The core challenge lies in inferring this underlying rule from few (maximum 4)
demonstrations and applying it accurately to unseen inputs.

Input Grid Target Grid

ARC tasks operate within a constrained domain: grids are limited to a resolution of 30× 30 pixels, each
assigned one of 10 distinct colors. Despite these simplifications, the tasks span a diverse array of concepts,
including object recognition, arithmetic operations, geometric transformations (e.g., mirroring, rotation),
pattern completion, and conditional object manipulation (e.g., movement, alteration, or removal). While
human adults solve approximately 80% of tasks through intuitive reasoning, state-of-the-art AI systems
struggle significantly. This disparity stems from ARC’s emphasis on rapid skill acquisition and systematic
generalization—capabilities not inherently supported by conventional machine learning paradigms, which
often rely on extensive data and predefined objectives.

Figure 1.1: Real ARC Examples from https://arcprize.org/blog/launch

Existing computational approaches to ARC broadly fall into two categories:

Page 1

https://arcprize.org/blog/launch

Solving ARC with
Reinforcement Learning

■ Induction-Based Methods These aim to construct a programmatic function f that maps training
inputs xtrain to outputs ytrain via interpretable transformations (e.g., rotations, reflections, color
operations). The derived function is then applied to test inputs xtest .

■ Transduction-Based Methods: In contrast, transductive approaches bypass explicit rule ex-
traction, treating the model itself as a dynamic program that directly generates outputs for novel
inputs.

Both paradigms face significant hurdles in scaling to ARC’s complexity, underscoring the benchmark’s
utility in measuring progress toward more adaptable, human-like reasoning in AI systems.

1.2 Proposed Approach

We propose a framework that integrates reinforcement learning (RL) for sequential transformation
prediction, inspired by human cognitive learning. Empirical studies in cognitive science [2, 3] suggest
that humans solve novel tasks through iterative hypothesis testing, refining strategies based on observed
outcomes. This trial-and-error process aligns with model-free RL, where an agent explores a sequence of
transformations, receives feedback, and updates its policy accordingly.
Our approach trains a model to sequentially predict the next best transformation, given the
current grid and target output grid. The RL agent iterates over transformation sequences, selecting
primitives that maximize alignment with the desired output. During training, the agent learns policies that
generalize across tasks by predicting one transformation at a time. When tested, instead of relying solely
on inference, we employ transfer learning to fine-tune the model on the specific task, allowing
it to overfit on available examples. Due to the structured nature of our Domain-Specific Language
(DSL), a transformation sequence that successfully maps one example within a task should generalize to
the remaining examples. This approach ensures adaptability while leveraging prior knowledge efficiently.

1.2.1 Methodology

Our framework consists of two core components:

1. Domain-Specific Language (DSL): We introduce a structured language designed for sequential
transformation synthesis, incorporating primitives such as rotation, mirroring, filtering, and object
detection. While robust DSLs already exist [4], our DSL is tailored for RL-based learning, enabling
stepwise transformation selection.

2. Sequential Program Search with RL: We formulate program synthesis as a sequential decision-
making problem, where an RL agent predicts the next best transformation at each step. To efficiently
navigate the large action space, we employ the Wolpertinger architecture, an actor-critic framework
optimized for discrete decision spaces. While transformers are well-suited for encoding long-range
dependencies, their computational cost is prohibitive. Instead, we utilize convolutional neural
networks (CNNs) for both the actor and critic networks, with a self attention layer.

Page 2

Solving ARC with
Reinforcement Learning

2 Domain-Specific Language (DSL)

2.1 Design Principles and Scope

To effectively represent and manipulate ARC tasks, we introduce a domain-specific language (DSL) tailored
for efficient reasoning over transformation sequences. The DSL defines a set of operations—referred to as
actions—that include geometric transformations (e.g., rotations, reflections, scaling), color modifications,
and pattern recognition. A well-designed DSL is essential for achieving sample efficiency, as ARC tasks
typically provide only two solved examples per problem. By structuring transformations within a compact
and expressive DSL, we ensure that if a sequence of actions correctly maps the input to the output in the
given examples, it generalizes to new instances by design.
Our DSL satisfies the following key principles:

1. Expressiveness: The DSL must be capable of representing a broad range of ARC tasks through
its primitives.

2. Abstraction and Generality: The DSL defines a minimal set of core primitives, each applicable
across multiple tasks, ensuring efficiency without sacrificing versatility.

3. Sequentiality: Since our approach models program synthesis as a sequential decision-making
process, the DSL must facilitate stepwise transformation application, where each transformation
modifies the grid based only on its current state.

The DSL proposed by Hodel [5] is designed around the principles of expressiveness and abstraction,
ensuring that a broad range of ARC tasks can be represented with a minimal yet powerful set of primitives.
While our DSL retains these foundational characteristics, it diverges fundamentally in its sequential
nature. In contrast to Hodel’s formulation, where transformations can be expressed as a holistic function
over the entire input-output mapping, our DSL enforces an iterative application of transformations, each
conditioned solely on the current state of the grid. This sequential structure is essential for integrating
reinforcement learning (RL), where an agent selects and applies transformations dynamically based on
observed states, without explicit access to prior states.

2.1.1 Action Decomposition

Each action in our DSL is decomposed into three fundamental sub-actions:

1. Color Selection: Identifies relevant colors within the grid.

2. Cell Selection: Determines which cells, given the selected color, will be modified.

3. Transformation: Applies a geometric or structural transformation to the selected cells.

This structured decomposition ensures that transformations are both interpretable and modular, facilitating
effective policy learning within the RL framework. A full specification of the DSL, including its formal
syntax and semantics, is provided in Appendix A.

2.2 Color Selection

The first part of the DSL, that is the one devoted to the color selection, provides a set of methods to
choose a color from a grid according to various possible rules. The chosen color is used as input of the
selection or transformation methods that need one, in order to construct a complete action. These rules
should be simple and capture patterns that an average person can recognize with minimal effort. The
goal is to ensure that the patterns align with intuitive human perception, as this is one of the core goals
of the challenge. The principal methods consist of selecting the color according to its appearance rank in
the whole grid or in some specific shapes. They require as input a 2D grid (and sometimes a rank) and
output an integer value between 0 and 9, that corresponds to a specific color. Table 2.1 summarizes the
main color selection functions.

Page 3

Solving ARC with
Reinforcement Learning

Function(s) Description

mostcolor, leastcolor Flattens the grid and counts color frequencies. Returns the most common
color with mostcolor or, after replacing zero counts with a large number, the
least common color with leastcolor.

rankcolor Sorts unique colors by frequency and returns the color at the specified rank
(defaults to the least common if the rank is too high).

rank_largest_shape_color_nodiag Labels non-diagonally connected regions for each color and returns the color
corresponding to the rank-th largest connected shape.

Table 2.1: Summary of Color Selection Functions.

2.3 Selection

The following step in building an action consists in choosing the object of the transformation. This
amounts to providing a tool to select a part of the grid based on different possible strategies, that should
be again be simple and recognizable by an average human being. These methods offer the possibility to
select cells matching a target color, extract particular kinds of rectangular or square regions, identify
connected shapes using either 4 or 8-connectivity, and delineate both inner and outer borders of these
regions. Methods that require a specific color have both the possibility to use colors that are output of a
color selection and colors that are not, since different tasks may require both possibilities.
Some selection methods can return multiple results; for example, there may be several rectangles of a
given color within the grid. To accommodate this, each selection method takes a 2D grid as input but
produces a 3D output, where each layer is a separate 2D boolean mask. These masks have 1s indicating
the selected cells and 0s elsewhere, allowing to stack multiple selections into a single output structure. An
example of how this works can be found in Figure 2.1. Table 2.2 summarizes the main selection functions.

Function(s) Description

select_color Creates a boolean mask selecting all cells of a specified color.

select_rectangles Selects rectangular regions of a given height and width that are entirely filled
with the target color.

select_connected_shapes,
select_connected_shapes_diag

Identifies and extracts connected shapes of a specified color. The first func-
tion uses 4-connectivity, while the second includes diagonal connections (8-
connectivity).

select_adjacent_to_color,
select_adjacent_to_color_diag

Selects cells adjacent to a target color. The first considers only edge-connected
neighbors (4-connectivity), while the second includes diagonally adjacent cells
(8-connectivity).

select_outer_border,
select_inner_border

Extracts the outer or inner borders of edge-connected shapes of a given color.

select_outer_border_diag,
select_inner_border_diag

Extracts the outer or inner borders of shapes using 8-connectivity, including
diagonal neighbors.

select_all_grid Creates a selection covering the entire grid.

Table 2.2: Summary of DSL Selection Functions.

2.4 Transformation

Lastly we introduce the main transformation functions that our agent should be able to operate. In our
implementation, these functions (40) are organized as methods of a Transformer class. They enable a
relatively wide range of operations including color manipulation, flipping, rotation, cropping, copy-paste
operations, gravity-based movements, and upscaling. These functions are designed to work on a 2D
grid (represented as a NumPy array) and a 3D boolean mask that indicates the selection; the grid is
stacked along a third dimension using the create_grid3d utility function. Table 2.3 summarizes the
main transformation functions.

Page 4

Solving ARC with
Reinforcement Learning

Function(s) Description

flipv, fliph, flip_main_diagonal,
flip_anti_diagonal,mirror_up/down
mirror_left/right,duplicate

Perform various flipping operations: vertical/horizontal flips, mirroring along
main or anti-diagonals, and duplicating the selection in specified directions
(subject to grid constraints).

rotate90, rotate180, rotate270 Rotate the selected cells by 90°, 180°, or 270° counterclockwise.

new_color, color, fill_with_color,
fill_with_color, change_color,

Apply various color transformations: change cell color, fill shapes with a
specified color, and adjust background or selection colors using ranking or
shape criteria.

copy_paste, copy_sum, cut_paste,
cut_sum, copy_paste_vertically,
copy_paste_horizontally

Execute copy-paste operations (or cut-paste) with or without summing values,
including repeated pasting vertically or horizontally within grid bounds.

gravitate_whole_down/upwards_paste

gravitate_whole_right/left_paste

Copy-paste the entire selection in a specified direction until an obstacle or grid
edge is encountered.

gravitate_whole_down/upwards_cut,
gravitate_whole_right/left_cut,

Cut-paste the entire selection in the specified direction until an obstacle or
grid boundary is reached.

down_gravity, up_gravity,
right_gravity, left_gravity

Apply gravity to individual selected cells, moving them in the specified direction
until they hit an obstacle or the grid boundary.

vupscale, hupscale,
vectorized_vupscale

Upscale the selection vertically or horizontally by a given factor while capping
to the original grid size; includes a vectorized vertical upscaling variant.

crop, delete Crop the grid to the bounding rectangle of the selection (cells outside are set
to -1) or set the selected cells to zero.

Table 2.3: Summary of DSL Transformation Functions.

In the Appendix A a detailed overview of the transformation functions is present. This framework forms
the backbone of our approach and is the essential set of actions through which our agent operates. Thanks
to its modularity we allow for flexible exploration of transformation operations, which is critical for
addressing the diverse and few-shot nature of ARC tasks.

2.5 A Concrete Example

In the following, we illustrate a complete action. The first grid represents the current state, where mostcolor
selects Blue. This color is then used by Select connected shapes to create a 3D grid—a stack of two 2D
black-and-white masks (black = 1, white = 0). Next, the transformation rotate90 is applied, producing a
3D grid of the same dimensions. Note that a rotation works on squares, hence when the selection does not
output a square, the rotation method applies the transformation on the smallest bounding square that
contains the original selection. Highlighted in orange are showed the bounding squares.

mostcolor

Color Selection

Select Connected Shapes

Selection

rotate90

(Transformation)

Figure 2.1: Complete process showing color selection, shape identification, and grid transformation

Page 5

Solving ARC with
Reinforcement Learning

3 Action Space & Environment

3.1 Action Space

As outlined in the previous section, the Domain-Specific Language (DSL) consists of three categories of
functions: color selection, selection, and transformation. We define the action space A as the set of
all possible triplets formed by selecting one function from each of these categories:

A :=

{
a = (color selectioni, selectionj , transformationk)

∣∣∣∣ i = 1, . . . , ncs; j = 1, . . . , ns; k = 1, . . . , nt

}
,

where ncs, ns, and nt denote the total number of color selection, selection, and transformation functions,
respectively. Each function within a category is assigned a value in the interval [0, 1], resulting in the
action space A being a subset of R3 by construction. Our DSL currently allows for approximately 20000
actions.

3.1.1 Action Similarity

The Wolpertinger architecture (see §4.3) leverages K-Nearest Neighbors to identify the closest actions in
a discrete space, given a proto-action (the output of the actor network) in a continuous space. For this
approach to be effective, it is crucial that similar actions in the discrete space are mapped close to each
other in the continuous space. To achieve this, we construct a new space Ã, referred to as the Space of
Embedded Actions. This space is built by computing the following three similarity matrices:

1. Color Similarity Matrix C ∈ Rncs×ncs : This matrix quantifies the similarity between pairs of
color selection functions by estimating the probability that two functions select the same color when
applied to random inputs. Given ne random inputs si, the matrix is defined as:

C =

[
1

ne

ne∑
i=1

1 (color selectionj(si) = color selectionk(si))

]
j=1,...,ncs
k=1,...,ncs

2. Selection Similarity Matrix S ∈ Rns×ns : This matrix measures the similarity between pairs of
selection functions based on the average overlap of their outputs when applied to the same random
input and color selection. Given ne random inputs si and random colors ci, the matrix is defined as:

S =

[
1

ne

ne∑
i=1

MaxOverlap (selectionj(si, ci), selectionk(si, ci))

]
j=1,...,ns
k=1,...,ns

where MaxOverlap(·, ·) is formally defined in §3.2.2.

3. Transformation Similarity Matrix T ∈ Rnt×nt : This matrix quantifies the similarity between
pairs of transformation functions by evaluating the average overlap of their outputs when applied
to the same random input grid and selection. Given ne random inputs si and selections seli, the
matrix is defined as:

T =

[
1

ne

ne∑
i=1

MaxOverlap (transformationj(si, seli), transformationk(si, seli))

]
j=1,...,nt
k=1,...,nt

Action Pair Similarity: Using these matrices, we define the approximate similarity between two actions
ai = (color selectionp, selectionq, transformationr) and aj = (color selectionu, selectionv, transformationw)
as the product of the similarities of their respective components:

Sim(ai, aj) = Cp,u · Sq,v · Tr,w
This approximation allows for efficient computation of action similarities in this highly combinatorial
spaces.

Page 6

Solving ARC with
Reinforcement Learning

3.1.2 Action Embedding with MDS

Given the similarity between all pairs of actions, we define the distance between actions ai and aj as:

d(ai, aj) = 1− Sim(ai, aj),

where Sim(ai, aj) represents the similarity between actions as previously defined. This transformation
ensures that highly similar actions have smaller distances, while dissimilar actions have larger distances.
To embed the discrete set of actions A into a continuous space, we employ the Multidimensional Scaling
(MDS) algorithm. MDS aims to represent high-dimensional data in a lower-dimensional space such that
the pairwise distances between points are preserved as much as possible.

Formal Definition of MDS: Let D = [d(ai, aj)] be the distance matrix of all action pairs, where

D ∈ R|A|×|A|. The goal of MDS is to find a set of vectors {ãi}|A|
i=1 in Rd such that the Euclidean distances

between the embedded actions ãi and ãj approximate the original distances d(ai, aj):

∥ãi − ãj∥2 ≈ d(ai, aj), ∀i, j.

This is achieved by minimizing the following stress function:

Stress({ãi}) =
√∑

i<j

(d(ai, aj)− ∥ãi − ãj∥2)2.

In our case, we embed the actions into a 20-dimensional continuous space Ã ⊂ R20, where Euclidean
distances approximate the original distances derived from the similarity measures.

Benefits of MDS Embedding: This embedding provides a continuous space Ã where each action
a ∈ A has a corresponding embedding ã ∈ Ã. Actions that are similar in their discrete representations
are mapped close to each other in this continuous space. The proto-action output from the actor network
resides in Ã, and the K-Nearest Neighbors (KNN) algorithm (see §4.3) is used to identify the closest
discrete actions in A. This ensures that the actor network can efficiently navigate the action space,
leveraging the proximity of similar actions in the embedded space.

Embedded Continuous Space Ã ∈ Rd

Color Selection

Selection

Transformation

Original Discrete Space A ∈ R3

Figure 3.1: Visualization of the action embedding process. The left panel illustrates the original discrete
action space A ∈ R3, defined by the combination of color selection, selection, and transformation functions.
The right panel shows the embedded continuous action space Ã ∈ Rd (with d > 3), obtained through
Multidimensional Scaling (MDS), where similar actions from the discrete space are mapped to nearby
points in the continuous space.

3.2 Environment

We introduce ARC Env, an environment designed to formulate Abstraction and Reasoning Corpus (ARC)
tasks as a reinforcement learning (RL) problem within the Gymnasium framework.

Page 7

Solving ARC with
Reinforcement Learning

3.2.1 Markov Decision Process Formulation.

The environment is structured as a Markov Decision Process (MDP) (S,A,R, γ), where:

■ S is the set of states, each representing a 2D grid padded to a uniform size of 30× 30, corresponding
to the maximum grid size in ARC.

■ A is the set of actions, each composed of a color selection, a selection operation, and a transformation.

■ R(s, a) is the reward function, measuring the improvement in alignment between the transformed
grid and the target.

■ γ is the discount factor, regulating the importance of future rewards.

At each timestep t, the agent observes the current state st, selects an action at ∈ A, receives a reward
R(st, at), and transitions to a new state st+1. The episode terminates if the agent reconstructs the target
grid, the grid degenerates to a single color,1 or a maximum of 30 steps is reached.
Each state consists of:

■ Current Grid: The agent’s current representation of the task.

■ Target Grid: The goal configuration that the agent must reconstruct.

All grids are padded to a fixed 30× 30 dimension before being served to the network. However, transfor-
mations and reward computations operate on the unpadded version of the grids to ensure meaningful
comparisons.
Each transformation produces a set of possible outputs, resulting in a 3D grid where each layer represents
a candidate transformation.

3.2.2 Reward Function

The reward function evaluates how much a transformation improves the alignment between the transformed
grid and the target. It is defined as follows:

R(s, a) = max
∆x,∆y

∑
i,j

1[G′
i+∆x,j+∆y = Ti,j]− max

∆x,∆y

∑
i,j

1[Gi+∆x,j+∆y = Ti,j]. (3.1)

Here,

■ G is the current grid before the transformation.

■ G′ is the transformed grid after applying action a.

■ T is the target grid.

■ 1[P] is the indicator function, which evaluates to 1 if the predicate P is true and 0 otherwise.

■ The max operator computes the highest possible overlap between the transformed grid G′ and the
target T , allowing for translations in both horizontal (∆x) and vertical (∆y) directions.

This function computes two quantities:

1. The maximum overlap between the transformed grid G′ and the target grid T over all possible
translations.

2. The maximum overlap between the original grid G and the target grid T before the transformation.

1If the grid collapses to a uniform color, the episode is truncated because such a state is typically irreversible, making it
nearly impossible for the agent to recover meaningful progress. Assigning a large negative reward discourages actions that
lead to this failure mode.

Page 8

Solving ARC with
Reinforcement Learning

Reward = 5− 3 = 2

Current:

4 2 1
0 2 2
5 3 7

Target:

4 2 6 8
5 0 0 2
1 5 6 6
0 1 9 7

Transformed:

0 0 1
0 2 6
1 3 7

Target:

4 2 6 8
5 0 0 2
1 5 6 6
0 1 9 7

Maximum overlap: 5Maximum overlap: 3

Figure 3.2: Example of calculation of the reward function.

By computing the difference between the post-transformation and pre-transformation maximum overlaps,
the reward function captures whether an action moved the agent closer to solving the task. If the
transformation reduces overlap (i.e., worsens alignment), the reward is negative, penalizing ineffective
actions.
Since each transformation generates multiple possible outputs, the environment initially represents the
transformed state as a 3D grid where each layer corresponds to a different possible transformation result.
However, during reward computation, only the transformed state with the highest overlap with the target
is selected. This ensures that the representation remains in 2D after the reward function is applied.

Page 9

Solving ARC with
Reinforcement Learning

4 Architecture

Large discrete action spaces pose significant challenges to conventional Reinforcement Learning (RL)
algorithms that typically assume either:

■ Small discrete sets (e.g., Atari-like settings), or

■ Continuous controls (e.g., MuJoCo environments).

Examples of large discrete tasks include ARC-like puzzles, where a Domain-Specific Language (DSL)
might combine color operations, shape transformations, and other primitives to form tens of thousands
(or more) possible actions.
To address this, we combine:

1. DDPG [6], an off-policy actor-critic approach typically geared towards continuous action spaces.

2. Wolpertinger [7], which adapts DDPG to large discrete action sets by mapping a continuous
proto-action to a discrete action via Nk(â), the set of k-nearest neighbors.

3. Feature Extraction for the Actor and Critic Networks:

■ Latent Program Network (LPN) Encoder [8], leveraging a Bayesian framework to produce
latent representations of partial program/task specifications. We omit the decoder and retain
only the encoder side.

■ CNN + Multi-Head Self-Attention, a modified convolutional backbone (inspired by
ResNet) plus an attention module to capture broad context from grid-based states.

In the following sections, we delve into the technical details behind each component. We start with
an explanation of how the actor and critic function within DDPG, then discuss Wolpertinger’s discrete
selection strategy, expand on the Bayesian viewpoint in the LPN encoder, and finally describe our CNN
with multi-head self-attention. We conclude with the training loop. Schematic diagrams (Figures 4.1-4.4)
illustrate the flow of data and computations.

4.1 High-Level Architecture Overview

State s

Actor Network πθ


â1
...

âd


Proto-action K-Nearest Neighbors Critic Network Qψ

Action with

highest

Q-value

Figure 4.1: Overall Architecture: The state s is processed by the actor network πθ, which generates
a continuous proto-action â ∈ Ã ⊂ Rd. The K-Nearest Neighbors algorithm identifies the set of actions
Nk(â) ∈ Ã that are closest to â. The critic network Qψ evaluates these candidate actions by taking both
the state s and the nearest actions Nk(â) as inputs to estimate their corresponding Q-values. The final
action selected is the one whose corresponding embedded action has the highest Q-value.

4.2 Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy RL algorithm that extends deterministic policy gradients to high-dimensional
continuous spaces. Here, the idea is adapted: the output of the actor is still a continuous vector (proto-
action), but we will use Wolpertinger to select discrete actions. In our implementation, the state space S
is composed of elements:

s ∈ S = (gridt, gridt+1)

where:

Page 10

Solving ARC with
Reinforcement Learning

■ t ≥ 0 is a given timestep.

■ gridt is the grid up to the previous action.

■ gridt+1 is the grid after the action at time t.

Both grids are padded to match the maximum grid size of (30× 30)

4.2.1 Critic Network

Definition. The critic, denoted as Qψ : S × Ã → R, estimates the Q-value for a given state-action pair
(s, ã). The critic receives actions in their embedded form, as detailed in §3.1.2. Formally, the critic is
defined as:

Qψ(s, ã) = MLPψ︸ ︷︷ ︸
Final Layers

(
ϕψ(s)︸ ︷︷ ︸

Encoded State

, ã
)
.

Where:

■ The critic network is parametrised by ψ.

■ ϕψ(s) is the encoded state (§4.4) as parametrised by ψ.

■ ã ∈ Ã ⊂ Rd is the embedding of an action a ∈ A, the discrete action space.

The encoded state ϕψ(s) and the embedded action ã are concatenated into a single vector
[
ϕψ(s), ã

]
∈

Rds+d. This concatenated vector is then passed through a feed-forward network (MLP) parameterized by
ψ, producing a scalar Q-value (see Fig. 4.3).

Objective. We train the critic by minimizing the following loss function:

Lcritic(ψ) =
1

B

B∑
i=1

(
[ri(si, ai) + γyi]−Qψ(si, ãi)

)2

,

Where:

■ r(s, a) represents the reward provided by the environment after performing the action a in state s.
It’s important to note that the environment processes the non-embedded version of the action.

■ yi is the predicted Q-value of the next state s′, obtained using the Target Critic Network. The
corresponding next action ã is computed using the Target Actor Network (refer to Section §4.2.3).

where yi are target Q-values computed via target networks and Wolpertinger (see §4.3).

State s


ã1
...

ãd



Embedded Action ã


ϕψ(s)1

...

ϕψ(s)ds



Encoded State



ϕψ(s)1

...

ϕψ(s)ds

ãds+1

...

ãds+d



Concatenation MLPψ

Estimated

Q-value

Figure 4.2: Critic structure: The critic concatenates the state embedding ϕ(s) and the action embedding
ψa(a), then processes the result with a feed-forward network to yield a scalar Q-value.

Page 11

Solving ARC with
Reinforcement Learning

4.2.2 Actor Network

Definition. The actor, denoted as πθ : S → Rd, maps each state s ∈ S to a d-dimensional proto-action
â. Formally, the actor is defined as:

πθ(s) = MLPθ︸ ︷︷ ︸
Final Layers

(
ϕθ(s)︸ ︷︷ ︸

Encoded State

)
.

Where:

■ The actor network is parametrized by θ.

■ ϕθ(s) is the encoded state (§4.4) as parametrized by ψ.

The encoded state ϕθ(s) is passed through a feed-forward network (MLP) parameterized by θ, producing
a proto-action â.

Objective. We train the actor to maximize the estimated Q-values computed by critic (minimize the
additive inverse of the estimated Q-values). The loss function for the actor is defined as:

Lactor(θ) = −
1

B

B∑
i=1

Qψ

(
si, πθ(si)

)
,

Where Qψ is the critic network that evaluates the quality of the proto-action â in the given state s. The
actor is optimized to increase the critic’s estimated Q-values by adjusting the parameters θ, thereby
improving the policy over time.

State s


ϕψ(s)1

...

ϕψ(s)ds


Encoded State MLPψ


â1

...

âd


Proto-action â

Figure 4.3: Actor structure: The actor takes as input state s and outputs a proto-action â

4.2.3 Target Networks and Replay Buffer

■ Target Networks: (θtarget, ψtarget) are slowly updated copies of (θ, ψ) to stabilize Q-value targets.
After each mini-batch update, we do:

θtarget ← τ θ + (1− τ) θtarget, ψtarget ← τ ψ + (1− τ)ψtarget,

with a small τ ∈ (0, 1].

■ Replay Buffer: We store transitions (s, a, r, s′,done). During each training iteration, we sample a
batch of transitions to compute Lcritic and Lactor.

4.3 Wolpertinger for Large Discrete Actions

In classical DDPG, πθ(s) ∈ Rd directly outputs the continuous action. Wolpertinger [7] adapts this
architecture to large discrete action spaces, by leveraging K-Nearest Neighbors. Given the proto-action
â = πθ(s), we identify the k nearest embedded actions in the discrete space Ã:

Nk(â) = argmin
ã∈Ã
∥â− ã∥2 (top k).

Page 12

Solving ARC with
Reinforcement Learning

Among these k nearest neighbors, we select:

ã∗ = arg max
ã∈Nk(â)

Qψ
(
s, ã

)
.

This is the embedded action among those in the K-Nearest Neighbors, with the highest estimated Q-value.
The corresponding action a ∈ A will be performed on state s. Hence, the actor indirectly selects a discrete
action by positioning its continuous proto-action â near the desired region in Rd.

Complexity. Exact k-NN lookups can have a computational complexity of O(|A| d) at each step. If |A|
is very large, approximate methods (e.g., KD-trees, hierarchical embeddings) are recommended. Gradient
flow from the Q-function to the actor bypasses Nk(â) because the discrete selection is non-differentiable;
the actor learns to place â in favorable neighborhoods over time.

4.4 Encoding States

4.4.1 Latent Program Network (LPN) Encoder with Bayesian Framework

Bonnet and Macfarlane [8] propose an encoder-decoder approach for program synthesis, incorporating a
Bayesian perspective:

■ Encoder: qθ(z | x) produces a posterior distribution over latent codes z ∈ RD given partial program
specifications x (e.g., example input-output pairs, constraints, partial code).

■ Decoder: pϕ(x | z) reconstructs or samples a DSL program from the latent code z.

■ Variational Objective: The following Evidence Lower Bound (ELBO) is optimized:

L(θ, ϕ) = Eqθ(z|x)
[
log pϕ(x | z)

]
− βKL

(
qθ(z | x) ∥ p(z)

)
,

where p(z) is typically a standard Gaussian prior. This encourages z to encode meaningful variations
of x while maintaining a smooth, expressive latent space.

How We Use It. Instead of decoding full programs, we:

1. Retain only the encoder, i.e., z = Encθ(s).

2. Optionally treat z as a random sample from qθ(z | s); however, in practice, we often use the mean
µθ(s) for stability.

3. This z ∈ RD is then passed to an MLP that outputs â ∈ Rd. Thus, πθ(s) is effectively a composition
of LPN Encoder and MLP.

Because the encoder was trained (or co-trained) under a Bayesian framework, z can reflect a distribution
of plausible transformations. In an RL context, we can also fine-tune the encoder parameters so that the
latent space better aligns with states relevant to the environment.

Latent Action Synthesis. Here, the LPN encoder effectively synthesizes the latent action or proto-
action by generating the embedding z, from which we derive â. We bypass full DSL program generation.
This adaptation yields a more powerful representation than a naive feed-forward network but can be
computationally heavier due to the encoder’s complexity (and potentially the sampling overhead if we
retain the Bayesian sampling approach).

4.4.2 CNN + Multi-Head Self-Attention

To balance representational power with computational cost, we created a CNN-based pipeline inspired by
ResNet-18, adding multi-head self-attention. Figure 4.4 illustrates the main components.

Page 13

Solving ARC with
Reinforcement Learning

Masked State s
ResNet layers + dilatation M-H S-A

x

GELU(x)

Adaptive Pool + FC Projection


ϕψ

...

ϕdsψ


Encoded state ϕψ

Figure 4.4: CNN with multi-head self-attention. After a modified ResNet stack processes the 4-channel
input (2 original + 2 mask), we apply a multi-head attention block. We then adaptively pool and flatten,
passing the result to a small FC layer. The final output is ϕs(s) ∈ Rds .

4.4.3 1. Channel Expansion with Masking

We begin with a grid s ∈ RH×W×2 (2 channels for puzzle state). We create two additional mask channels
(1.0 where a cell is valid, 0.0 otherwise), forming a (4×H ×W) tensor. This is fed into a modified ResNet
conv1 (e.g., 4→ 64 kernels).

4.4.4 2. ResNet-like Convolutional Blocks

■ Layer 1, 2, 3: Each consists of several residual blocks. We might remove layer4 entirely to keep
the feature map dimension moderate.

■ Dilation: Convolutions in deeper blocks (layer2, layer3) can have dilation (2, 2) to enlarge the
receptive field without excessive downsampling.

■ Striding Adjustments: If a block tries to downsample, we sometimes override its stride to maintain
a consistent spatial resolution (W ′ ×H ′).

4.4.5 3. Multi-Head Self-Attention

Whereas a single-head attention uses a single set of (Q,K, V) transformations, multi-head attention
divides channels (or embedding dimensions) into multiple heads that process queries, keys, and values in
parallel. Suppose we have Nheads heads; each head h has:

Qh =Wh
Q F, Kh =Wh

K F, Vh =Wh
V F,

where Wh
Q,W

h
K ,W

h
V map C channels to Ch = C

Nheads
per head. For each head:

Ah = softmax
(Q⊤

h Kh√
Ch

)
, Oh = VhA

⊤
h .

We then concatenate O1, . . . , ONheads
along the channel dimension, forming Õ ∈ RC×(W ′H′). Reshape

back to RC×W ′×H′
. We optionally apply:

Fatt = γ Conv1x1(Õ) + (1− γ)F, LayerNorm(Fatt).

The 1× 1 convolution merges heads if needed, and γ is a learnable scalar for mixing the attended output
and residual F .

4.4.6 4. Adaptive Pool + Fully Connected Projection

We apply AdaptiveAvgPool2d(Fatt) to reduce Fatt ∈ RC×W ′×H′
to a fixed (C × 4× 4) shape. Flattening

yields 16C features, which are passed through a linear layer:

zs = GELU
(
Linear(16C, ds)

)
,

possibly followed by dropout. This zs ∈ Rds is the final CNN embedding, i.e., ϕs(s). The actor’s MLP
uses ϕs(s) to produce â ∈ Rd, while the critic takes ϕs(s) as part of its state input.

Page 14

Solving ARC with
Reinforcement Learning

5 Conclusions

Due to computational limitations, we were unable to train the model with the LPN encoder. Therefore,
this section refers to the model utilizing a CNN and Multi-Head Attention as feature extractors. It is
important to acknowledge that this architecture is suboptimal and lacks the capability to fully learn
complex logical patterns. Moreover, the available computational resources were insufficient to train the
model for enough episodes to ensure convergence.
Despite these constraints, our results provide evidence that the model exhibits learning capabilities in
terms of both value loss and policy loss. The following figures illustrate the promising performance of an
actor-critic network with approximately 25 million parameters. This represents the largest network we
have trained, and our experiments indicate that increasing the model’s scale significantly enhances its
learning ability.

Figure 5.1: Training loss over time for value loss (left) and policy loss (right). The solid blue line
represents the smoothed version of the loss, while the red line represents the original values. Both losses
exhibit a decreasing trend, indicating learning progress.

The network was trained for approximately 80,000 steps, which we acknowledge is insufficient for full
convergence to an optimal policy. Nevertheless, both value loss and policy loss show a steady decrease
throughout training. Notably, the value loss decreases rapidly in logarithmic scale. Meanwhile, the decline
in policy loss is slower but still significant, likely due to limitations in the action embeddings, as discussed
in §5.1.3.

Figure 5.2: 20-step moving average of rewards over time. The increasing trend suggests that the model
is progressively improving its ability to select better actions.

Encouragingly, the moving average of the episodic reward demonstrates a clear upward trend over time,
indicating that the model is successfully improving its decision-making ability. This improvement is
facilitated by the gradual reduction of the exploration factor (epsilon), which allows the model to prioritize
learned policies over random exploration.

Page 15

Solving ARC with
Reinforcement Learning

5.1 Limitations and Future Work

Although the proposed approach has not yet achieved the desired performance, there is considerable scope
for refining and extending this initial model. In the following sections, we discuss the primary limitations
encountered and propose directions for future research.

5.1.1 Computational Constraints

A major limitation of our study stems from the restricted computational resources available during
experimentation. The limited hardware has constrained our ability to train larger networks and extend
training durations. For instance, due to these constraints, we were unable to incorporate the LPN encoder
(see Section 4.4.1) into our training regime—a modification that we believe could enhance the agent’s
environmental understanding. In the current setup, training was limited to approximately 10 hours on
an NVIDIA P100 GPU. We expect that increased computational capacity will significantly improve the
agent’s performance.

5.1.2 Hierarchical Reinforcement Learning

The utilization of the Wolpertinger agent introduces inherent limitations, primarily because it represents
actions as vectors in a d-dimensional space. This representation leads to two significant issues:

1. It fails to account for dependencies among the sub-actions within the d-dimensional action space.

2. The combinatorial nature of the domain-specific language (DSL) complicates scaling.

In our context, there exists a strong dependency among the three DSL function types (color selection,
selection, and transformation). Constructing a meaningful action requires an understanding of the
interdependencies among these functions. A promising direction is to develop a hierarchical model that
first outputs a meta-action in a high-dimensional latent space of conceptual actions, and then sequentially
constructs the final action (from selection to transformation). Such an approach could offer two main
advantages:

1. It would more effectively capture the intricate dependencies between sub-actions.

2. It reduces the complexity of the decision process at each step, since the model would choose from a
limited set of functions for each sub-action rather than generating the complete action in one step.

A critical challenge with this hierarchical method is the credit assignment problem. Since the environment
provides a reward only for the overall action, it is unclear how to distribute this reward among the various
sub-action components. An inappropriate allocation may inadvertently penalize a sub-action network for
errors made by subsequent components.

5.1.3 Learnable Action Embeddings

Our current approach to action embeddings (see Section 3.1.2) is limited by its non-learnable nature,
which restricts the agent’s capacity to understand and navigate the action space effectively. At present,
the similarity between actions is computed based on the similarity of their outputs. However, it would
be more advantageous for the agent to autonomously learn the logical similarities between actions. For
example, an action that turns the entire grid red and one that turns it yellow are considered distant in
the current embedding space, despite their logical similarity. Future work should focus on developing a
learnable embedding mechanism (either shared between or separate for the actor and critic) to improve
action representation. One challenge with integrating a learnable embedding within the Wolpertinger
framework is that the architecture relies on finding the k-nearest neighbors of a proto-action at each
iteration. A dynamic embedding would necessitate reconstructing the nearest neighbor graph at every
iteration, which could be computationally prohibitive. An alternative solution may involve combining a
learnable embedding with a hierarchical reinforcement learning algorithm, as outlined above.

Page 16

Solving ARC with
Reinforcement Learning

6 References

[1] François Chollet. On the measure of intelligence, 2019.

[2] Tursun Alkam and Ebrahim Tarshizi. Reinforcement learning in cognitive science: Foundations and
applications. Available at SSRN 5055984.

[3] Ajay Subramanian, Sharad Chitlangia, and Veeky Baths. Psychological and neural evidence for
reinforcement learning: A survey. CoRR, abs/2007.01099, 2020.

[4] Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang,
Sejin Kim, and Sundong Kim. Reasoning abilities of large language models: In-depth analysis on the
abstraction and reasoning corpus, 2024.

[5] Michael Hodel. Domain-specific language for the abstraction and reasoning corpus.

[6] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.

[7] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement
learning in large discrete action spaces, 2016.

[8] Clément Bonnet and Matthew V Macfarlane. Searching latent program spaces, 2024.

Page 17

Solving ARC with
Reinforcement Learning

A Appendix A: DSL

A.1 Color Selection

The ColorSelector class provides a set of methods to select colors from a grid according to different
strategies. In the context of the Abstraction Reasoning Corpus, these methods help determine colors
based on their frequency or the size of their connected regions, facilitating grid-based reasoning.

Most Common Color

1 def mostcolor(self , grid: np.ndarray) -> int:

2 values = grid.flatten ()

3 counts = np.bincount(values , minlength=self.num_colors)

4 return int(np.argmax(counts))

This method flattens the grid into a one-dimensional array, counts the occurrences of each color, and
returns the color with the highest frequency.

Least Common Color

1 def leastcolor(self , grid: np.ndarray) -> int:

2 values = grid.flatten ()

3 counts = np.bincount(values , minlength=self.num_colors)

4 counts[counts == 0] = self.big_number

5 return int(np.argmin(counts))

Here the grid is flattened and color frequencies are computed. Zero counts are replaced with a large
number to avoid selecting colors that do not appear, and the color with the lowest adjusted count is returned.

Ranked Color Selection

1 def rankcolor(self , grid: np.ndarray , rank: int) -> int:

2 unique_colors , counts = np.unique(grid , return_counts=True)

3 sorted_indices = np.argsort(-counts)

4 if rank < len(unique_colors):

5 return int(unique_colors[sorted_indices[rank]])

6 else:

7 last_nonzero_index = sorted_indices [-1]

8 return int(unique_colors[last_nonzero_index])

This function computes the frequency of each unique color, sorts them in descending order, and returns
the color that ranks as the specified most common. If the provided rank exceeds the number of unique
colors, the method defaults to returning the least common among those present.

Rank of Largest Connected Shape

1 def rank_largest_shape_color_nodiag(self , grid: np.ndarray , rank: int) -> int:

2 unique_colors = np.unique(grid)

3 num_colors = len(unique_colors)

4 dimension_of_biggest_shape = np.zeros(num_colors , dtype=int)

5 for i, color in enumerate(unique_colors):

6 color_mask = grid == color

7 labeled_grid , _ = label(color_mask.astype(int))

8 _, counts = np.unique(labeled_grid , return_counts=True)

9 counts = counts [1:]

10 dimension_of_biggest_shape[i] = np.max(counts) if counts.size > 0 else 0

11 sorted_indices = np.argsort(-dimension_of_biggest_shape)

12 if rank >= len(sorted_indices):

13 smallest_nonzero_index = np.argmin(np.where(dimension_of_biggest_shape > 0,

dimension_of_biggest_shape , np.inf))

14 return int(unique_colors[smallest_nonzero_index]) if dimension_of_biggest_shape[

smallest_nonzero_index] > 0 else int(unique_colors [0])

15 return int(unique_colors[sorted_indices[rank]])

This method identifies connected components for each unique color (using non-diagonal connectivity)
by labeling contiguous regions in a binary mask. It then determines the size of the largest connected
region per color, sorts the colors by these sizes, and returns the color corresponding to the rank-th largest
connected shape.
This function exists in two versions: with diagonal connections and without. The provided code does not
consider diagonal connections.

Page 18

Solving ARC with
Reinforcement Learning

A.2 Selection

The Selector class implements a series of methods to extract and process regions in a 2D grid based on
color and spatial connectivity within the Abstraction Reasoning Corpus. The class offers functionality to
select cells matching a target color, extract rectangular regions composed solely of that color, identify con-
nected regions using either 4- or 8-connectivity, and delineate both inner and outer borders of these regions.
Each method returns a 3D boolean array where the first dimension indexes the different selections obtained.

Single Color Mask

1 def select_color(self , grid: np.ndarray , color: int) -> np.ndarray:

2 mask = grid == color

3 n_rows , n_cols = grid.shape

4 mask = np.reshape(mask , (-1, n_rows , n_cols))

5 return mask

This method creates a boolean mask by comparing each cell of the grid with the target color, reshapes the re-
sult into a 3D array with a single layer, and raises a warning if no cell in the grid matches the specified color.

Rectangular Color Regions

1 def select_rectangles(self , grid: np.ndarray , color: int , height: int , width: int) -> np.

ndarray:

2 rows , cols = grid.shape

3 rectangles = []

4 color_mask = self.select_color(grid , color)

5 if np.sum(color_mask) == 0:

6 return np.expand_dims(np.zeros_like(grid), axis =0)

7 color_mask = color_mask [0, :, :]

8 for i in range(rows - height + 1):

9 for j in range(cols - width + 1):

10 sub_rect = color_mask[i : i + height , j : j + width]

11 if np.all(sub_rect):

12 rect_mask = np.zeros_like(color_mask , dtype=bool)

13 rect_mask[i : i + height , j : j + width] = True

14 rectangles.append(rect_mask)

15 if rectangles:

16 result_3d = np.stack(rectangles , axis =0)

17 else:

18 result_3d = np.zeros((0, *color_mask.shape), dtype=bool)

19 return result_3d

This function extracts rectangular regions of specified height and width that are completely filled with
cells of the target color. It iterates over all valid starting positions in the grid, checks if the corresponding
subgrid is entirely of the target color, and collects each valid rectangle as a separate layer in the resulting
3D array.

Color Shapes with Edge Connections

1 def select_connected_shapes(self , grid: np.ndarray , color: int) -> np.ndarray:

2 color_mask = self.select_color(grid , color)

3 if np.sum(color_mask) == 0:

4 return np.expand_dims(np.zeros_like(grid), axis =0)

5 color_mask = color_mask [0, :, :]

6 labeled_array , num_features = label(color_mask)

7 shape = (num_features , *color_mask.shape)

8 result_3d = np.zeros(shape , dtype=bool)

9 for i in range(1, num_features + 1):

10 result_3d[i - 1] = (labeled_array == i)

11 return result_3d

This method isolates connected regions of the target color using 4-connectivity. It first obtains a boolean
mask for the color, labels the connected components, and then extracts each component into its own layer
in a 3D boolean array.

Color Shapes with Edge and Corner Connections

1 def select_connected_shapes_diag(self , grid: np.ndarray , color: int) -> np.ndarray:

2 color_mask = self.select_color(grid , color)

3 if np.sum(color_mask) == 0:

4 return np.expand_dims(np.zeros_like(grid), axis =0)

Page 19

Solving ARC with
Reinforcement Learning

5 color_mask = color_mask [0, :, :]

6 structure = np.ones((3, 3), dtype=bool)

7 labeled_array , num_features = label(color_mask , structure)

8 shape = (num_features , *color_mask.shape)

9 result_3d = np.zeros(shape , dtype=bool)

10 for i in range(1, num_features + 1):

11 result_3d[i - 1] = (labeled_array == i)

12 return result_3d

This function operates like select connected shapes but uses an 8-connectivity structure (including
diagonal neighbors) to label and extract connected regions of the specified color.

Cells Adjacent to Color by Edges

1 def select_adjacent_to_color(self , grid: np.ndarray , color: int , points_of_contact: int)

-> np.ndarray:

2 nrows , ncols = grid.shape

3 color_mask = self.select_color(grid , color)

4 color_mask = color_mask [0, :, :]

5 kernel = np.array ([[0, 1, 0],

6 [1, 0, 1],

7 [0, 1, 0]])

8 contact_count = convolve(color_mask.astype(int), kernel , mode="constant", cval =0)

9 selection_mask = (contact_count == points_of_contact) & ~color_mask

10 selection_mask = np.reshape(selection_mask , (-1, nrows , ncols))

11 return selection_mask

This method identifies cells that are not of the target color but are adjacent (non-diagonally) to it with
an exact number of contact points. It computes the number of neighboring cells of the target color us-
ing a cross-shaped convolution kernel and returns a mask where the contact count equals the specified value.

Cells Adjacent to Color by Edges and Corners

1 def select_adjacent_to_color_diag(self , grid: np.ndarray , color: int , points_of_contact:

int) -> np.ndarray:

2 nrows , ncols = grid.shape

3 color_mask = self.select_color(grid , color)

4 color_mask = color_mask [0, :, :]

5 kernel = np.ones((3, 3), dtype=bool)

6 contact_count = convolve(color_mask.astype(int), kernel , mode="constant", cval =0)

7 selection_mask = (contact_count == points_of_contact) & ~color_mask

8 selection_mask = np.reshape(selection_mask , (-1, nrows , ncols))

9 return selection_mask

This function extends the adjacent selection by considering all eight neighbors. It applies a full 3x3
convolution kernel to count adjacent cells of the target color and then returns a mask where cells (not of
the target color) have exactly the given number of colored neighbors.

Outer Borders of Edge-Connected Shapes

1 def select_outer_border(self , grid: np.ndarray , color: int) -> np.ndarray:

2 color_separated_shapes = self.select_connected_shapes(grid , color)

3 for i in range(len(color_separated_shapes)):

4 color_separated_shapes[i] = find_boundaries(color_separated_shapes[i], mode="

outer")

5 return color_separated_shapes

This method extracts the outer borders of connected shapes of the target color. It first identifies connected
regions using 4-connectivity and then applies a boundary detection algorithm in ”outer” mode to each
region.

Inner Borders of Edge-Connected Shapes

1 def select_inner_border(self , grid: np.ndarray , color: int) -> np.ndarray:

2 color_separated_shapes = self.select_connected_shapes(grid , color)

3 for i in range(len(color_separated_shapes)):

4 color_separated_shapes[i] = find_boundaries(color_separated_shapes[i], mode="

inner")

5 return color_separated_shapes

This function selects the inner borders of connected shapes of the target color. It uses the 4-connectivity
based segmentation and then extracts the inner boundaries by applying the boundary detection function

Page 20

Solving ARC with
Reinforcement Learning

in ”inner” mode.

Outer Borders of Edge and Corner Connected Shapes

1 def select_outer_border_diag(self , grid: np.ndarray , color: int) -> np.ndarray:

2 color_separated_shapes = self.select_connected_shapes_diag(grid , color)

3 for i in range(len(color_separated_shapes)):

4 color_separated_shapes[i] = find_boundaries(color_separated_shapes[i], mode="

outer")

5 return color_separated_shapes

This method retrieves the outer borders of connected shapes identified with 8-connectivity. It first segments
the grid into connected regions including diagonal neighbors and then extracts the outer boundaries for
each region.

Inner Borders of Edge and Corner Connected Shapes

1 def select_inner_border_diag(self , grid: np.ndarray , color: int) -> np.ndarray:

2 color_separated_shapes = self.select_connected_shapes_diag(grid , color)

3 for i in range(len(color_separated_shapes)):

4 color_separated_shapes[i] = find_boundaries(color_separated_shapes[i], mode="

inner")

5 return color_separated_shapes

This function mirrors select inner border but for shapes segmented using 8-connectivity. It extracts
the inner borders of each connected region that includes diagonal connections.

Entire Grid

1 def select_all_grid(self , grid: np.ndarray , color: int = None) -> np.ndarray:

2 nrows , ncols = grid.shape

3 return np.ones((1, nrows , ncols), dtype=bool)

This method returns a mask covering the entire grid. It generates a 3D boolean array with a single layer
where every cell is selected.

A.3 Transformation

This class implements a variety of transformation methods on a grid structure for the Abstraction and
Reasoning Corpus (ARC). It treats a 2D grid as a 3D array, where each “layer” corresponds to a binary
mask of selected cells. Unless otherwise stated, each method returns a 3D version of the grid after applying
the transformation.
Change Selected Cells to a New Color

1 def new_color(self , grid , selection , color):

2 grid_3d = create_grid3d(grid , selection)

3 grid_3d[selection == 1] = color

4 return grid_3d

This function changes all selected cells to the specified color, ignoring color existence checks.

Apply a Specified Color to the Selection

1 def color(self , grid , selection , method , param):

2 color_selected = select_color(grid , method , param)

3 grid_3d = create_grid3d(grid , selection)

4 grid_3d[selection == 1] = color_selected

5 return grid_3d

This function determines a color via the given method (one among color selection methods) and parameter
(for the color selection method), then assigns that color to every selected cell in the grid.

Fill Holes in a Single Connected Shape

1 def fill_with_color(self , grid , selection , method , param):

2 grid_3d = create_grid3d(grid , selection)

3 fill_color = select_color(grid , method , param)

4 filled_masks = np.array([binary_fill_holes(i) for i in selection])

5 new_masks = filled_masks & (~ selection)

6 grid_3d[new_masks] = fill_color

7 return grid_3d

Page 21

Solving ARC with
Reinforcement Learning

This function fills interior holes in the selected shape using binary hole-filling, then colors those newly
filled cells.

Fill the Bounding Rectangle with a Color

1 def fill_bounding_rectangle_with_color(self , grid , selection , method , param):

2 color = select_color(grid , method , param)

3 grid_3d = create_grid3d(grid , selection)

4 bounding_rectangle = find_bounding_rectangle(selection)

5 grid_3d = np.where(

6 (bounding_rectangle & (bounding_rectangle & (1 - selection))) == 1,

7 color ,

8 grid_3d

9)

10 return grid_3d

This function identifies the smallest rectangle covering the selection and colors all of its empty cells.

Fill the Bounding Square with a Color

1 def fill_bounding_square_with_color(self , grid , selection , method , param):

2 color = select_color(grid , method , param)

3 grid_3d = create_grid3d(grid , selection)

4 bounding_square = find_bounding_square(selection)

5 grid_3d = np.where(

6 (bounding_square & (bounding_square & (1 - selection))) == 1,

7 color ,

8 grid_3d

9)

10 return grid_3d

This function finds the smallest square covering the selection and colors all of its empty cells.

Flip Vertically Inside the Bounding Rectangle

1 def flipv(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 bounding_rectangle = find_bounding_rectangle(selection)

4 flipped_bounding_rectangle = np.flip(bounding_rectangle , axis =1)

5 grid_3d[bounding_rectangle] = np.flip(grid_3d , axis =1)[flipped_bounding_rectangle]

6 return grid_3d

This function flips the selected area top-to-bottom within its bounding rectangle.

Flip Horizontally Inside the Bounding Rectangle

1 def fliph(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 bounding_rectangle = find_bounding_rectangle(selection)

4 flipped_bounding_rectangle = np.flip(bounding_rectangle , axis =2)

5 grid_3d[bounding_rectangle] = np.flip(grid_3d , axis =2)[flipped_bounding_rectangle]

6 return grid_3d

This function flips the selected area left-to-right within its bounding rectangle.

Flip Along the Main Diagonal

1 def flip_main_diagonal(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 bounding_square = find_bounding_square(selection)

4 for i in range(grid_3d.shape [0]):

5 mask = bounding_square[i]

6 rows , cols = np.where(mask)

7 min_row , max_row = rows.min(), rows.max()

8 min_col , max_col = cols.min(), cols.max()

9 square = grid_3d[i, min_row:max_row + 1, min_col:max_col + 1]

10 mirrored = square.T

11 grid_3d[i, min_row:max_row + 1, min_col:max_col + 1] = mirrored

12 return grid_3d

This function mirrors a square region along the main diagonal (top-left to bottom-right).

Flip Along the Anti-Diagonal

Page 22

Solving ARC with
Reinforcement Learning

1 def flip_anti_diagonal(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 bounding_square = find_bounding_square(selection)

4 for i in range(grid_3d.shape [0]):

5 mask = bounding_square[i]

6 rows , cols = np.where(mask)

7 min_row , max_row = rows.min(), rows.max()

8 min_col , max_col = cols.min(), cols.max()

9 square = grid_3d[i, min_row:max_row + 1, min_col:max_col + 1]. copy()

10 mirrored = np.flip(np.rot90(square), 1)

11 grid_3d[i, min_row:max_row + 1, min_col:max_col + 1] = mirrored

12 return grid_3d

This function mirrors a square region along the anti-diagonal (top-right to bottom-left).

Rotate a Square Region by Multiples of 90

1 def rotate(self , grid , selection , num_rotations):

2 grid_3d = create_grid3d(grid , selection)

3 bounding_masks = find_bounding_square(selection)

4 for i in range(bounding_masks.shape [0]):

5 bounding_mask = bounding_masks[i]

6 rows , cols = np.where(bounding_mask)

7 row_start , row_end = rows.min(), rows.max() + 1

8 col_start , col_end = cols.min(), cols.max() + 1

9 sub_grid = grid_3d[i, row_start:row_end , col_start:col_end]

10 rotated_sub_grid = np.rot90(sub_grid , num_rotations)

11 grid_3d[i, row_start:row_end , col_start:col_end] = rotated_sub_grid

12 return grid_3d

13

14 def rotate_90(self , grid , selection):

15 return self.rotate(grid , selection , 1)

16

17 def rotate_180(self , grid , selection):

18 return self.rotate(grid , selection , 2)

19

20 def rotate_270(self , grid , selection):

21 return self.rotate(grid , selection , 3)

The first function rotates the selected square region 90 degrees counterclockwise num rotations times.
The following three functions are simple wrappers that call it with 1, 2, or 3 rotations respectively.

Mirror the Selection Outside the Grid

1 def mirror_down(self , grid , selection):

2 d, rows , cols = selection.shape

3 grid_3d = create_grid3d(grid , selection)

4 new_grid_3d = np.zeros ((d, rows * 2, cols))

5 new_grid_3d [:, :rows , :] = grid_3d

6 new_grid_3d [:, rows:, :] = np.flip(grid_3d , axis =1)

7 flipped_selection = np.flip(selection , axis =1).astype(bool)

8 new_grid_3d [:, rows:, :][~ flipped_selection] = 0

9 return new_grid_3d.astype(int)

10

11 def mirror_up(self , grid , selection):

12 ...

13 return new_grid_3d.astype(int)

14

15 def mirror_right(self , grid , selection):

16 ...

17 return new_grid_3d.astype(int)

18

19 def mirror_left(self , grid , selection):

20 ...

21 return new_grid_3d.astype(int)

These functions mirror the selection vertically or horizontally outside the original grid. Unmirrored cells
in the extended region are set to zero.

Duplicate the Selection Outside the Grid

1 def duplicate_horizontally(self , grid , selection):

2 d, rows , cols = selection.shape

Page 23

Solving ARC with
Reinforcement Learning

3 grid_3d = create_grid3d(grid , selection)

4 new_grid_3d = np.zeros ((d, rows , cols * 2))

5 new_grid_3d [:, :, :cols] = grid_3d

6 new_grid_3d [:, :, cols :][selection.astype(bool)] = grid_3d[selection.astype(bool)]

7 return new_grid_3d

8

9 def duplicate_vertically(self , grid , selection):

10 ...

11 return new_grid_3d

These functions replicate the selected cells to a new region either on the right or below the current grid,
ignoring any size checks.

Copy-Paste Cells with Shifts

1 def copy_paste(self , grid , selection , shift_x , shift_y):

2 grid_3d = create_grid3d(grid , selection)

3 layer_idxs , old_row_idxs , old_col_idxs = np.where(selection)

4 new_row_idxs = old_row_idxs + shift_y

5 new_col_idxs = old_col_idxs + shift_x

6 valid_mask = (

7 (new_row_idxs >= 0) & (new_row_idxs < grid_3d.shape [1]) &

8 (new_col_idxs >= 0) & (new_col_idxs < grid_3d.shape [2])

9)

10 layer_idxs = layer_idxs[valid_mask]

11 old_row_idxs = old_row_idxs[valid_mask]

12 old_col_idxs = old_col_idxs[valid_mask]

13 new_row_idxs = new_row_idxs[valid_mask]

14 new_col_idxs = new_col_idxs[valid_mask]

15 values = grid_3d[layer_idxs , old_row_idxs , old_col_idxs]

16 grid_3d[layer_idxs , new_row_idxs , new_col_idxs] = values

17 return grid_3d

18

19 def copy_sum(self , grid , selection , shift_x , shift_y):

20 grid_3d = create_grid3d(grid , selection)

21 layer_idxs , old_row_idxs , old_col_idxs = np.where(selection)

22 new_row_idxs = old_row_idxs + shift_y

23 new_col_idxs = old_col_idxs + shift_x

24 valid_mask = (

25 (new_row_idxs >= 0) & (new_row_idxs < grid_3d.shape [1]) &

26 (new_col_idxs >= 0) & (new_col_idxs < grid_3d.shape [2])

27)

28 layer_idxs = layer_idxs[valid_mask]

29 old_row_idxs = old_row_idxs[valid_mask]

30 old_col_idxs = old_col_idxs[valid_mask]

31 new_row_idxs = new_row_idxs[valid_mask]

32 new_col_idxs = new_col_idxs[valid_mask]

33 values = grid_3d[layer_idxs , old_row_idxs , old_col_idxs]

34 np.add.at(grid_3d , (layer_idxs , new_row_idxs , new_col_idxs), values)

35 grid_3d = grid_3d % 10

36 return grid_3d

37

38 def cut_paste(self , grid , selection , shift_x , shift_y):

39 grid_3d = create_grid3d(grid , selection)

40 layer_idxs , old_row_idxs , old_col_idxs = np.where(selection)

41 new_row_idxs = old_row_idxs + shift_y

42 new_col_idxs = old_col_idxs + shift_x

43 valid_mask = (

44 (new_row_idxs >= 0) & (new_row_idxs < grid_3d.shape [1]) &

45 (new_col_idxs >= 0) & (new_col_idxs < grid_3d.shape [2])

46)

47 values = grid_3d[layer_idxs[valid_mask], old_row_idxs[valid_mask], old_col_idxs[

valid_mask]]

48 grid_3d[layer_idxs , old_row_idxs , old_col_idxs] = 0

49 grid_3d[layer_idxs[valid_mask], new_row_idxs[valid_mask], new_col_idxs[valid_mask]] =

values

50 return grid_3d

51

52 def cut_sum(self , grid , selection , shift_x , shift_y):

53 grid_3d = create_grid3d(grid , selection)

54 layer_idxs , old_row_idxs , old_col_idxs = np.where(selection)

55 new_row_idxs = old_row_idxs + shift_y

56 new_col_idxs = old_col_idxs + shift_x

57 valid_mask = (

Page 24

Solving ARC with
Reinforcement Learning

58 (new_row_idxs >= 0) & (new_row_idxs < grid_3d.shape [1]) &

59 (new_col_idxs >= 0) & (new_col_idxs < grid_3d.shape [2])

60)

61 values = grid_3d[layer_idxs[valid_mask], old_row_idxs[valid_mask], old_col_idxs[

valid_mask]]

62 grid_3d[layer_idxs , old_row_idxs , old_col_idxs] = 0

63 np.add.at(grid_3d , (layer_idxs[valid_mask], new_row_idxs[valid_mask], new_col_idxs[

valid_mask]), values)

64 grid_3d = grid_3d % 10

65 return grid_3d

These functions shift the selected cells by (shift x, shift y). Copy-based methods keep the original
intact; cut-based methods set the original location to 0. Summation variants combine overlapping values
modulo 10.

Copy-Paste Selection Vertically

1 def copy_paste_vertically(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 n_masks , height_of_grid , _ = grid_3d.shape

4 rows_with_one = np.any(selection == 1, axis =2)

5 first_rows = np.full(n_masks , -1)

6 last_rows = np.full(n_masks , -1)

7 for idx in range(n_masks):

8 row_indices = np.where(rows_with_one[idx])[0]

9 if row_indices.size > 0:

10 first_rows[idx] = row_indices [0]

11 last_rows[idx] = row_indices [-1]

12 selection_height = last_rows - first_rows + 1

13 factor_up = np.ceil(first_rows / selection_height).astype(int)

14 factor_down = np.ceil((height_of_grid - last_rows - 1) / selection_height).astype(int

)

15 final_transformation = grid_3d.copy()

16 for idx in range(n_masks):

17 grid_layer = final_transformation[idx]

18 selection_layer = selection[idx]

19 grid_layer_3d = np.expand_dims(grid_layer , axis =0)

20 selection_layer_3d = np.expand_dims(selection_layer , axis =0)

21 for i in range(factor_up[idx]):

22 shift = -(i + 1) * selection_height[idx]

23 grid_layer_3d = self.copy_paste(grid_layer_3d , selection_layer_3d , 0, shift)

24 for i in range(factor_down[idx]):

25 shift = (i + 1) * selection_height[idx]

26 grid_layer_3d = self.copy_paste(grid_layer_3d , selection_layer_3d , 0, shift)

27 final_transformation[idx] = grid_layer_3d [0]

28 return final_transformation

29

30 def copy_paste_horizontally(self , grid , selection):

31 ...

32 return final_transformation

These functions replicate the selected region upwards/downwards or leftwards/rightwards within the grid
bounds as many times as possible, layering new copies without erasing the original.

Gravitate the Whole Selection (Copy-Paste)

1 def gravitate_whole_downwards_paste(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 depth , rows , cols = selection.shape

4 grid_without_selection = grid_3d.copy()

5 indices = np.nonzero(selection)

6 grid_without_selection[indices] = 0

7 row_indices = np.arange(rows).reshape(1, rows , 1)

8 sel_row_indices = np.where(selection , row_indices , -1)

9 max_row_sel = sel_row_indices.max(axis =1)

10 selection_exists_in_column = (max_row_sel != -1)

11 max_row_sel_expanded = max_row_sel [:, None , :]

12 mask_below_selection = row_indices > max_row_sel_expanded

13 obstacles_below = (grid_without_selection != 0) & mask_below_selection

14 obstacle_positions = np.where(obstacles_below , row_indices , rows)

15 obstacle_positions = np.where(selection_exists_in_column [:, None , :],

obstacle_positions , rows + 1)

16 shift_per_column = obstacle_positions.min(axis =1) - max_row_sel - 1

Page 25

Solving ARC with
Reinforcement Learning

17 shift_per_depth = np.min(shift_per_column , axis =1)

18 shift_per_depth = np.clip(shift_per_depth , 0, rows)

19 layer_idxs , old_row_idxs , old_col_idxs = np.where(selection)

20 shift_y = shift_per_depth[layer_idxs]

21 grid_3d = self.copy_paste(grid_3d , selection , shift_x=0, shift_y=shift_y)

22 return grid_3d

23

24 def gravitate_whole_upwards_paste(self , grid , selection):

25 ...

26 return grid_3d

27

28 def gravitate_whole_right_paste(self , grid , selection):

29 ...

30 return grid_3d

31

32 def gravitate_whole_left_paste(self , grid , selection):

33 ...

34 return grid_3d

These methods collectively move the entire selected region down, up, left, or right until it reaches a
grid boundary or collides with non-zero cells. They replicate the selection rather than removing the original.

Gravitate the Whole Selection (Cut-Paste)

1 def gravitate_whole_downwards_cut(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 depth , rows , cols = selection.shape

4 grid_without_selection = grid_3d.copy()

5 indices = np.nonzero(selection)

6 grid_without_selection[indices] = 0

7 row_indices = np.arange(rows).reshape(1, rows , 1)

8 sel_row_indices = np.where(selection , row_indices , -1)

9 max_row_sel = sel_row_indices.max(axis =1)

10 selection_exists_in_column = (max_row_sel != -1)

11 max_row_sel_expanded = max_row_sel [:, None , :]

12 mask_below_selection = row_indices > max_row_sel_expanded

13 obstacles_below = (grid_without_selection != 0) & mask_below_selection

14 obstacle_positions = np.where(obstacles_below , row_indices , rows)

15 obstacle_positions = np.where(selection_exists_in_column [:, None , :],

obstacle_positions , rows + 1)

16 shift_per_column = obstacle_positions.min(axis =1) - max_row_sel - 1

17 shift_per_depth = np.min(shift_per_column , axis =1)

18 shift_per_depth = np.clip(shift_per_depth , 0, rows)

19 layer_idxs , old_row_idxs , old_col_idxs = np.where(selection)

20 shift_y = shift_per_depth[layer_idxs]

21 grid_3d = self.cut_paste(grid_3d , selection , shift_x=0, shift_y=shift_y)

22 return grid_3d

23

24 def gravitate_whole_upwards_cut(self , grid , selection):

25 ...

26 return grid_3d

27

28 def gravitate_whole_right_cut(self , grid , selection):

29 ...

30 return grid_3d

31

32 def gravitate_whole_left_cut(self , grid , selection):

33 ...

34 return grid_3d

These methods are identical to the “paste” versions except they remove (cut) the original selected cells
after shifting them, leaving the source region empty.

Downward, Upward, Rightward, and Leftward Gravity (Per-Cell)

1 def down_gravity(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 num_layers , num_rows , num_cols = grid_3d.shape

4 for layer_idx in range(num_layers):

5 selection_layer = selection[layer_idx]

6 selected_rows , selected_cols = np.where(selection_layer == 1)

7 for i in range(len(selected_rows) - 1, -1, -1):

8 row , col = selected_rows[i], selected_cols[i]

Page 26

Solving ARC with
Reinforcement Learning

9 value = grid_3d[layer_idx , row , col]

10 grid_3d[layer_idx , row , col] = 0

11 selection_layer[row , col] = 0

12 for target_row in range(row + 1, num_rows):

13 if grid_3d[layer_idx , target_row , col] != 0:

14 grid_3d[layer_idx , target_row - 1, col] = value

15 selection_layer[target_row - 1, col] = 1

16 break

17 else:

18 grid_3d[layer_idx , num_rows - 1, col] = value

19 selection_layer[num_rows - 1, col] = 1

20 return grid_3d

21

22 def up_gravity(self , grid , selection):

23 ...

24 return grid_3d

25

26 def right_gravity(self , grid , selection):

27 ...

28 return grid_3d

29

30 def left_gravity(self , grid , selection):

31 ...

32 return grid_3d

These transformations move each selected cell one at a time until it is blocked or reaches the boundary,
thus “raining” them down, up, left, or right.

Upscale the Selection Vertically & Horizontally

1 def vupscale(self , grid , selection , scale_factor):

2 selection_3d_grid = create_grid3d(grid , selection)

3 depth , original_rows , original_cols = selection.shape

4 upscaled_selection = np.repeat(selection , scale_factor , axis =1)

5 upscaled_selection_3d_grid = np.repeat(selection_3d_grid , scale_factor , axis =1)

6 capped_selection = np.zeros((depth , original_rows , original_cols), dtype=bool)

7 capped_upscaled_grid = np.zeros((depth , original_rows , original_cols))

8 for layer_idx in range(depth):

9 original_com = center_of_mass(selection[layer_idx])[0]

10 upscaled_com = center_of_mass(upscaled_selection[layer_idx])[0]

11 if original_rows % 2 == 0:

12 half_rows_top , half_rows_bottom = original_rows // 2, original_rows // 2

13 else:

14 half_rows_top , half_rows_bottom = original_rows // 2 + 1, original_rows // 2

15 lower_bound = min(int(upscaled_com + half_rows_bottom), original_rows *

scale_factor)

16 upper_bound = max(int(upscaled_com - half_rows_top), 0)

17 capped_selection[layer_idx] = upscaled_selection[layer_idx , upper_bound:

lower_bound , :]

18 capped_upscaled_grid[layer_idx] = upscaled_selection_3d_grid[layer_idx ,

upper_bound:lower_bound , :]

19 capped_com = center_of_mass(capped_selection[layer_idx])[0]

20 offset = capped_com - original_com

21 lower_bound += offset

22 upper_bound += offset

23 if lower_bound >= original_rows * scale_factor:

24 lower_bound = original_rows * scale_factor

25 upper_bound = lower_bound - original_rows

26 elif upper_bound <= 0:

27 upper_bound = 0

28 lower_bound = upper_bound + original_rows

29 capped_selection[layer_idx] = upscaled_selection[layer_idx , upper_bound:

lower_bound , :]

30 capped_upscaled_grid[layer_idx] = upscaled_selection_3d_grid[layer_idx ,

upper_bound:lower_bound , :]

31 selection_3d_grid[selection == 1] = 0

32 selection_3d_grid[capped_selection] = capped_upscaled_grid[capped_selection].ravel ()

33 return selection_3d_grid

34

35 def hupscale(self , grid , selection , scale_factor):

36 ...

37 return selection_3d_grid

Page 27

Solving ARC with
Reinforcement Learning

This function vertically repeats each selected row according to scale factor, then centers and caps the
result to the original bounding rows.

Crop to the Selection’s Bounding Rectangle

1 def crop(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 bounding_rectangle = find_bounding_rectangle(selection)

4 for i in range(selection.shape [0]):

5 bounding_rectangle[i] = np.ones_like(grid_3d[i], dtype=bool) if not

bounding_rectangle[i].any() else bounding_rectangle[i]

6 grid_3d [~ bounding_rectangle] = -1

7 return grid_3d

This function zeros out every cell outside the bounding rectangle around the selection by setting it to −1.

Delete Selected Cells

1 def delete(self , grid , selection):

2 grid_3d = create_grid3d(grid , selection)

3 grid_3d[selection] = 0

4 return grid_3d

This function simply sets any selected cell to 0.

Page 28

	Introduction
	Abstract reasoning corpus
	Proposed Approach

	Domain-Specific Language (DSL)
	Design Principles and Scope
	Color Selection
	Selection
	Transformation
	A Concrete Example

	Action Space & Environment
	Action Space
	Environment

	Architecture
	High-Level Architecture Overview
	Deep Deterministic Policy Gradient (DDPG)
	Wolpertinger for Large Discrete Actions
	Encoding States

	Conclusions
	Limitations and Future Work

	References
	Appendix A: DSL
	Color Selection
	Selection
	Transformation

